上海海洋大学深渊科学技术研究中心

  深渊科学技术项目的灵感来自于“蛟龙号”。“蛟龙号”在5000米级海试和7000米级海试过程中邀请海洋科学家参与海试过程,充分挖掘了每个试验潜次的科学价值,让参试的工程技术人员体会到了科学家与工程技术人员密切结合的好处。另一方面,从2010年美国纪念人类到达马里亚纳海沟的最深处---“挑战者深渊”50周年的纪念专刊中了解到了深渊科学与技术是海洋领域最前沿的科学与技术。因此,在“蛟龙号”7000米级海试结束后,具有国际视野的海洋地质学家、也是助蛟龙号项目成功的幕后英雄、“蛟龙号”海试技术咨询专家组组长、海试现场验收组长、美国明尼苏达大学高级科学家丁抗博士给科技部提出了如下的建议:“对比目前国际上能携带科学家的载人潜水器,唯有蛟龙号能够在属于所谓HadalDepth(海斗深度,指6000-11000米的深度区间)的 6500-7100米深度段进行科研作业,而这样的深度具有极为特殊的生物活动,但是我国科技界拥有的这个独一无二的深潜优势估计将在3-5年或者更短的时间内丧失;这次的海底作业表明,蛟龙号7000米海试的下潜区域是一个具有重要科学研究意义的地点,它紧挨挑战者深渊,具有丰富和明显的生物与地质活动的多样性,并且能够得到所属国密克罗尼西亚政府的支持。 查看详情>>

首页 > 中心简介 > 深渊科学团队 >

深渊科学团队

方家松

岗位: 深渊中心副主任
职称: 特聘教授
研究领域: 地质微生物学、生物地球化学
方家松,1989年获路易斯安娜州立大学硕士学位,1993年获德州农工大学博士学位。海洋化学博士,微生物学博士后,2016年国家“千人计划”创新人才长期项目专家、2009年教育部“长江学者奖励计划”特聘教授、深渊科学与技术研究中心副主任。夏威夷太平洋大学教授。
主要研究领域为深海和深部生物圈嗜高压微生物和细菌芽孢的地质微生物学和生物地球化学,研究手段包括传统的以实验室分离培养为基础的研究方法和非传统的分子微生物学、生物标志化合物和稳定同位素方法。方家松长期从事深海嗜高压微生物生态学和海洋碳循环研究,形成了系统的结合微生物学、生态学、酶学和海洋化学的创造性学术成果,建立了微生物(尤其是深海嗜高压微生物)介导的海洋碳循环模型:“海洋碳-菌链”(POM-DOM-Piezophilic Microorganism Continuum; PDPMC)。这个模型为研究海洋碳循环动力学过程(mechanistic processes)提供了一个指导性框架,为预测全球变化下的海洋碳循环动力学提供了理论基础。
 
近年来,方家松教授在深海和深部生物圈嗜高压细菌、革兰氏阳性菌芽孢的分离培养技术、深海和深部生物圈嗜高压细菌和革兰氏阳性菌芽孢的高压C 、H同位素地球生物化学等方面取得了一系列研究成果(见下面).
主要荣誉和学术兼职:
Deep-Sea Research I: Oceanographic Research Papers 副主编(Associate Editor)
Frontiers in Marine Science 副主编(Associate Editor)
Groundwater 副主编(Associate Editor)
2003年获美国航天航空局(NASA)、美国工程教育学会、大学空间研究协会授予的《杰出研究奖》(Research Excellence Award)。
代表性成果
 1.      嗜高压微生物调控的深海碳循环:PDPMC (POM-DOM piezophilic microorganism continuum) 模型
与其它碳循环模型不同,我们的PDPMC模型强调深海嗜高压微生物在海洋碳循环中的主导作用(Fang et al., 2012, 2015); 嗜高压微生物适应了深海高压和富难降解溶解有机物的环境,它们在POC转化成高分子量的DOC,然后将后者转化成低分子量的DOC,并进一步对DOC的降解,都起着关键性的作用。该模型强调海洋有机碳的化学和介导碳循环的微生物学、生态学和酶学在海洋中随时-空的变化(continuum)。PDPMC为我们认识海洋碳循环动力学过程提供了一个指导性框架。有助于我们解决全球碳循环中的一些关键问题,如海洋POC和DOC之间的相互转换、POC及DOC的化学结构及微生物可降解性、海洋碳储库的变化及对微生物在海洋碳循环的控制性作用,等等。

 2.      深部生物圈高压微生物分离的最新世界纪录—最深洋壳沉积物中嗜高压微生物和芽孢的分离与研究
2012年9月,我们从IODP 337航次获得了三个来自西太平洋海底以下1498.49米、1999米和2406.84米深度采集的深部生物圈沉积物样品。目前已分离出多株革兰氏阳性产芽胞嗜高压厌氧菌,它们隶属于厚壁菌门杆菌和梭状芽胞杆菌类。这些分离出的嗜高压细菌创造了从深部生物圈分离出嗜高压细菌的最深世界纪录。此外,我们的研究也表明,深部生物圈的优势种群可能是嗜高压芽孢革兰氏阳性菌及其芽胞(endospore) (Fang et al., 2017)。这些细菌的最佳生长条件(温度和压力)与它们所处的深度完全不同。我们推断,这些革兰氏阳性产芽孢菌可能来源于异地,随着沉积物在海盆的堆积和埋藏,这些细菌形成了芽孢而被埋藏于深部生物圈20个百万年。以上研究表明,深部生物圈微生物的种群结构和多样性可能与表层生物圈显著不同,细菌的芽胞可能是深部生物圈微生物群落的重要组成部分。这个发现将从根本上改变人们对深部生物圈微生物种群结构和多样性的认识。

 3.      嗜高压细菌脂类化合物合成及其在高压条件下的碳、氢同位素分馏
这是我们近期一直在倡导的一个新的生物地球化学研究领域—高压同位素生物地球化学。嗜高压细菌有独特的生物标志化合物和与嗜高压细菌生长压力有关的碳、氢同位素分馏特性。生物标志化合物(包括脂类化合物和氨基糖 (胞壁酸和吡啶二羧酸等) )及其碳、氢同位素特征,是研究深海碳循环、深部生物圈微生物-岩石-水相互作用、微生物代谢以及生物地球化学循环的重要工具(Fang et al., 2006, 2014)。但目前海洋学家和生物地球化学家所用的碳、氢同位素地球化学理论是基于地表微生物而建立起来的,不适用于深海和深部生物圈地球化学过程的研究。我们的研究表明,深海嗜高压微生物在脂类化合物生物合成中的碳同位素分馏与微生物生长压力有关,压力越高,碳同位素分馏越大。我们的研究成果为探索深海和深部生物圈碳循环、氢循环、微生物生理和生物地球化学过程提供了极有价值的研究工具,也为今后建立高压同位素生物地球化学、进行脂类化合物的高压同位素异数体研究提供了理论基础和实验数据。

 4.      嗜高压细菌生物化学和生理学研究
我们的研究组在世界上首创了LC-MS磷脂分析方法(intact phospholipid profiling; Fang et al., 1998),并首先对嗜高压细菌细胞膜磷脂进行了分析(Fang et al., 2000),率先提出嗜高压细菌磷脂生物合成的生理学意义及其对嗜高压细菌适应深海高压环境的生理作用(Fang et al., 2000)。我们最近对革兰氏阳性细菌Sporosarcina sp. DSK25的研究(Wang et al., 2014)取得突破性进展,发现革兰氏阳性细菌和革兰氏阴性细菌一样,在高压条件下能合成多不饱和脂肪酸,这是地表革兰氏阳性细菌所不具有的生物化学特性,也是嗜高压细菌适应高压环境的一种“长期性”生物化学适应机理(Wang et al., 2014)。
 
PEER-REVIEWED PUBLICATIONS [* denote corresponding author]
Liu, L., Wang, L., Wei, Y., Fang*, J., 2017. The hadal biosphere: recent insights and new directions. Deep-Sea Research II, doi.org/10.1016/j.dsr2.2017.04.015.
Fang*, J., Kato, C., Runko, G. M., Nogi, Y., Hori, T., Li, J., Morono, Y., Inagaki, F., 2017. Predominance of viable spore-forming piezophilic bacteria in high-pressure enrichment cultures from ~1.5 to 2.4 km-deep coal-bearing sediments below the ocean floor. Frontiers in Microbiology 8:137. doi: 10.3389/fmicb.2017.00137.
Dasgupta, D., and Fang*, J., 2017. Mitochondrial clock: moderating evolution of early eukaryotes in light of the Proterozoic oceans. Biologia 71, 843-852, 72/5: 586.
Wei Y., Cao J, Fang* J, Kato C, Cui W. 2017. First complete genome sequence of Marinilactibacillus piezotoleransstrain 15R, a marine lactobacillus isolated from coal-bearing sediment 2.0 kilometers below the seafloor, determined by PacBio single-molecule real-time technology. Genome Announcement 5, e01625-16. https://doi.org/10.1128/genomeA.01625-16
Wei, Y., Cao, J., Fang*, J., Kato, C., Cui, W., 2017. Complete Genome Sequence of Bacillus subtilis strain 29R7-12, a Piezotolerant Bacterium Isolated from Coal-Bearing Sediment 2.4 km Below the Seafloor. Genome Announcement 5, e01621-16.
Liu, Q., Li, J., Wei, B., Zhang, X., Zhang, L., Zhang, Y., and Fang*, J., 2016. Leeuwenhoekiella nanhaiensis sp. nov., isolated from the deep-sea water of the South China Sea. International Journal of Systematic and Evolutionary Microbiology 66, 1352-1357.
Li, J., Zhou, H., Fang*, J., Wu, Z., Peng, X., 2016. Microbial distribution in a hydrothermal plume of the Southwestern Indian Ridge. Geomicrobiology J. 33, 401-415.
Li, J., Wei, B., Wang, J., Liu, Y., Dasgupta, S., Zhang, L., Fang*, J., 2015. Variation in abundance and community structure of particle-attached and free-living bacteria in the South China Sea. Deep-Sea Research II 122, 64-73.
Kim, S.-H., Tian, Q., Fang, J., and Sung, S., 2015. Removal of 17-β estradiol in water by sonolysis. International Biodeterioration & Biodegradation, 102, 11–14.
Wei, B., Li, J., Zhang, L., Liu, Y., Fang*, J., 2015. The 234Th:238U disequilibria and their applications in studying marine particulates dynamics. Marine Geology Frontiers 31, 1-9.
Fang*, J., Zhang, L., Li, J., Kato, C., Zhang, Y., Tamburini, C., Wang, G., Wang, F., and Dang, H., 2015. The POM-DOM piezophilic microorganism continuum (PDPMC) – the role of piezophilic microorganisms in the global ocean carbon cycle. Science China (Earth Sciences) 57, 1-10.
Nilsen, F., Hyrenbach, K.D., Fang, J., and Jensen, B., 2014. Use of indicator chemicals to characterize the plastic fragments ingested by Laysan albatross. Marine Pollution Bulletin 87, 230–236.
Li, J., Zhou, H., Fang*, J., Sun, Y., and Dasgupta, S., 2014. Microbial distribution in different spatial positions within the walls of a black sulfide hydrothermal chimney. Mar. Ecol. Prog. Ser. 508, 67–85.
Fang*, J., Li, C., Zhang, L., Kato, C., and Bartlett, D. G., 2014. Variations in dD of fatty acids biosynthesized by piezophilic bacterium Moritella japonica DSk1 reflect different biosynthetic pathways. Chemical Geology 367, 34–38.
Wang, J., Li, J., Dasgupta, S., Zhang, L., and Fang*, J., 2014. Alterations in membrane lipid composition of piezophilic Gram-positive bacterium Sporosarcina sp. DSK25 at high pressures. Lipids, 49, 347–356.
Zhang, L., Fang*, J., and Joeckel, A.M., 2013. Microbial biomass and community structure in alkaline lakes of the Nebraska Sand Hills, USA. Chemical Geology 356, 171–180.
Dasgupta, S., Fang*, J., Brake, S. S., Hasiotis, S.T., and Zhang, L., 2013. Stable isotope fractionation in lipids of Euglena-dominated biofilms from an acid mine drainage site: interpretation of environmental conditions, microbial physiology, and biosynthetic pathways. Chemical Geology 354, 15–21.
Dasgupta, S., Fang*, J., Li, J., Zhang, L., Wang, J., and Wei, B., 2013. Microeukaryotes in modern acid mine drainage: biodiversity, physiology, and biogeochemistry and clues to the evolution of life and the early Earth environment. Quaternary Science, 33, 68–78.
Li, J., Sun, Y., Fang, J., Chen, S., P. X., Wu, Z., and Zhou, H., 2013. Aerobic and anaerobic ammonia-oxidizing microorganisms in low-temperature hydrothermal Fe-Si-rich precipitates of the southwestern Pacific Ocean. Geomicrobiology Journal DOI: 10.1080/ 01490451.2013.802397.
Bazylinski, D.A., Williams, T.J., Lefèvre, C.T., Trubitsyn, D., Fang, J., Beveridge, T.J., Moskowitz, B.M., Ward, B., Schübbe, S., Dubbels, B.L., and Simpson, B. 2012. Magnetovibrio blakemorei, gen. nov. sp. nov., a new magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. International Journal of Systematic and Evolutionary Microbiology 63, 1824–1833.
Li, J., Zhou, H., Peng, X., Wu, Z., Chen, S., and Fang, J., 2012. Microbial diversity and biomineralization in low-temperature hydrothermal iron–silica-rich precipitates of the Lau Basin hydrothermal field. FEMS Microbiology Ecology 81, 205–216.
Dasgupta, S., Fang*, J., Brake, S.S., Hasiotis, S.S., and Zhang, L., 2012. Biosynthesis of sterols and wax esters by Euglena of acid mine drainage biofilms: Implications for eukaryotic evolution and the early Earth. Chemical Geology 306307, 139–145.
Wu, X., Fang, J., Xiang, M.O., Ling, H.E., Xin-Ting, S., 2011. Driving mechanisms for the DOC increases in surface waters released from Northern Peatlands under global change. Earth Science Frontiers 18, 72-78.
Shelton, J.M., Kim, L., Fang, J., Ray, C., and Yan, T., 2011. Assessing the severity of rainfall derived infiltration and inflow and sewer deterioration based on the flux stability of sewage markers. Environmental Science and Technology. 45, pp 8683–8690.
Fang, J., and L. Zhang, 2011. Piezophilic bacteria. In: The Encyclopedia of Geobiology, the Springer Encyclopedia of Earth Sciences Series (J. Reitner and V. Thiel, eds.), Springer-Verlagx, Heidelbergx, Germanyx.
Fang, J., and L. Zhang, 2011. Genomics, metagenomics, and microbial oceanography—A sea of opportunities. Science China (Earth Sciences) 54, 473–480.
Fang, J., and L. Zhang, 2011. Explore the deep biosphere. Science China (Earth Sciences) 54, 1–9.
Fang, J., L. Zhang, and Bazylinski, D.A., 2010. The deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends in Microbiology 18, 413-422.
Fang, J., and Kato, C., 2010. Deep-sea piezophilic bacteria: geomicrobiology and biotechnology. In: Geomicrobiology: Biodiversity and Biotechnology (S. K. Jain, ed.), pp. 47-77. Blackwell Publishing.
Fang, J., and Bazylinski, D. A., 2008. Deep-sea geomicrobiology. In: High-Pressure Microbiology (C. Michiels and D. H. Bartlett, eds.), American Society for Microbiology, Washington, D.C. pp. 237-264.
Fang, J., and Kato, C., 2008. Deep-sea piezophilic bacteria, ocean carbon cycle, and climate change. In: the Encyclopedia of Global Warming and Climate Change (S. George Philander, ed.), Golson Books, Ltd., 2:557-558.
Fang, J., and Kato, C., 2007. FAS or PKS, lipid biosynthesis and stable carbon isotope fractionation in deep-sea piezophilic bacteria. In: Communicating Current Research and Educational Topics and Trends in Applied Microbiology (2007), The Formatex Microbiology Book Series (A. Méndez-Vilas, ed.), Formatex Center, Spain, pp. 190-200.
Fang, J., Gupta, S. D., Hasiotis, S. T., Brake, S. S., and Bazylinski, D. A., 2007. Microbial community structure of a stromatolite from an acid mine drainage system, implications for the role of microeukaryotes in the formation of ancient Fe-rich stromatolites. Chemical Geology 243, 191-204.
Fang, J., Lyon, D. Y., Alvarez, P. J. J., Wiesner, M., and Dong, J., 2007. Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environmental Science and Technology 41, 2636-2642.
Fang, J., Arakawa, S., Kato, C., and Schouten, S., 2006. Microbial diversity of cold-seep sediments in Sagami Bay, Japan determined by 16S rDNA and lipid analyses. FEMS Microbiology Ecology 57, 429-441.
Fang, J., Uhle, M., Billmark, K., Bartlett, D. H., and Kato, C., 2006. Fractionation of carbon isotopes in biosynthesis of fatty acids by a piezophilic bacterium Moritella japonica DSK1. Geochimica et Cosmochimica Acta 70, 1753-1760.
Fang, J., Chan, C., Joeckel, R. M., Huang, Y., Wang, Y., Bazylinski, D. A., and Moorman, T. B., 2006. Biomarker analysis of microbial diversity in sediments of a saline groundwater seep of Salt Basin, Nebraska. Organic Geochemistry 37, 912-931.
Fang, J., Lovanh, N., and Alvarez, P. J., 2004. The use of isotopic and lipid analysis techniques linking toluene degradation to specific microorganisms: applications and limitations.  Water Research 38, 2529-2536.
Fang, J., Kato, C., Sato, T., Chan, O., Agarkar, N., and McKay, D. S., 2004. Polyunsaturated fatty acids in piezophilic bacteria: biosynthesis or dietary uptake? Comparative Biochemistry and Physiology B 137, 455-461.
Fang, J., Chan, O., Kato, C., Sato, T., Peeples, T., and Niggemeyer, K., 2003. Phospholipid fatty acid profiles of piezophilic bacteria from the deep sea. Lipids 38, 885-887.
Namocatcat, J. A., Fang, J., and Barcelona, M. J., 2003. Biogeochemical evidence of intrinsic bioremediation in a shallow sand aquifer contaminated with jet fuel hydrocarbons. Journal of Contaminant Hydrology 67, 177-194.
Zhang, C. L., Li, Y., Ye, E., Fong, J., Peacock, A., Fang, J., Lovley, D., and White, D.C., 2003. Carbon isotopic signatures of fatty acids in Geobacter metallireducens and Shewanella putreficiens. Chemical Geology 195, 17-28.
Fang, J., and Barcelona, M. J., 2003. Coupled oxidation of aromatic hydrocarbons by horseradish peroxidase and hydrogen peroxide. Chemosphere 50, 105-109.
Fang, J., Kawamura, K., Ishimura, Y., and Matsumoto, K., 2002. Carbon isotopic composition of fatty acids in the marine aerosols from the western North Pacific: Implication for the source and atmospheric transport.  Environmental Science and Technology 36, 2598-2604.
Fang, J., Barcelona, M. J., Abrajano, T. A., Kato, C., and Nogi, Y., 2002. Isotopic composition of fatty acids isolated from the extremely piezophilic bacteria from the Mariana Trench at 11,000 meters. Marine Chemistry 80, 1-9.
Fang, J., and Kato, C., 2002. Piezophilic bacteria: taxonomy, diversity, adaptation, and potential biotechnological applications, pp. 47-80. In: Recent Advances in Marine Biotechnology (M. Fingerman, ed.), vol. 8, Science Publishers, Inc. Enfield. 
Zhang, C. L., Ye, Q., Anna-Louise Reysenbach, Götz, D., Peacock, A. White, D. C., Horita, J., Cole, D. R., Fong, J., Pratt, L., Fang, J., and Huang, Y., 2002. Carbon isotopic fractionations associated with thermophilic bacteria Thermotoga maritima and Persephonella marina. Environmental Microbiology 4, 58-64.
Fang, J., Barcelona, M. J., and Alvarez, P. J., 2000. Phospholipid patterns of five pseudomonad archetypes for different aerobic toluene degradation pathways. Bioremediation Journal 4, 181-185.
Fang, J., Barcelona, M. J., and Semrau, J., 2000. Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. FEMS Microbiology Letters 189, 67-72.
Fang, J., Barcelona, M. J., and Alvarez, P. J., 2000. A direct comparison between fatty acid analysis and intact phospholipid profiling for microbial identification. Organic Geochemistry 31, 881-887.
Fang, J., Barcelona, M. J., and Alvarez, P. J., 2000. Phospholipid compositional changes of five pseudomonad archetypes grown with and without toluene. Applied Microbiology and Biotechnology 54, 382-389.
Fang, J., Barcelona, M. J., Krishnamurthy, R. V., and Atekwana, E. A., 2000. Stable carbon isotope biogeochemistry of an aquifer contaminated with fuel hydrocarbons. Applied Geochemistry 15, 157-169.
Fang, J., Barcelona, M. J., Kato, C., and Nogi, Y., 2000. Biochemical function and geochemical significance of novel phospholipids isolated from extremely barophilic bacteria from the Mariana Trench at a depth of 11,000 meters. Deep-Sea Research I 47, 1173-1182.
Fang, J., and Barcelona, M. J., 1999. Determination of organic acids in ground water by liquid chromatography/ atmospheric pressure chemical ionization/mass spectrometry. Analytical Letters 32, 1459-1473.
Fang, J., and Barcelona, M. J., 1998. Biogeochemical evidence for community changes associated with hydrocarbon contamination in a sand aquifer.  Organic Geochemistry 29, 899-907.
Fang, J., and Barcelona, M. J., 1998. Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry.  Journal of Microbiological Methods 33, 23-35.
Xie, G., Barcelona, M. J., and Fang, J., 1998. Measurement and quantification of TPH by a GC/MS method and comparison with EPA 418.1 and PetroFlag® based on sediment samples from a contaminated site. Analytical Chemistry 71, 1899-1904.
Fang, J., Barcelona, M. J., and West, C., 1997. The use of aromatic acids and phospholipid ester-linked fatty acids for delineation of processes affecting an aquifer contaminated with JP-4 fuel, pp. 65-76. In: Molecular Markers in Environmental Geochemistry (R P. Eganhouse, ed.). American Chemical Society, Washington, D.C. 
Mayer, L. M., Chen, Z., Findlay, R. H., Fang, J., Sampson, S., Self, R. F., Jumars, P. A., Quetel, C., and Donard, O. F., 1996. Bioavailability of sedimentary contaminants subject to deposit-feeder digestion. Environmental Science and Technology 30, 2641-2645.
Fang, J., and Findlay, R. H., 1996. The use of a classic lipid extraction method for simultaneous recovery of organic pollutants and phospholipids.  Journal of Microbiological Methods 27, 63-71.
Yu, Y., Wade, T. L., Fang, J., Brooks, J. M., and McDonald, S., 1995. Production of PAH metabolites in Antarctic fish (Notothenia gibberifrons) dosed with diesel fuel Arctic and its implications to environmental pollution monitoring.  Archive of Environmental Contamination and Toxicology 29, 241-246.
Abrajano, T. A., Murphy, D., Fang, J., and Comet, P. A., 1994. 13C/12C ratios in individual fatty acids of marine mytilids with and without bacterial symbionts. Organic Geochemistry 21, 611-618.
Fang, J., Abrajano, T. A., Comet, P. A., Brooks, J. M., and Sassen, R., 1993. Gulf of Mexico hydrocarbon seep communities: IX.  Isotope fractionation during fatty acid biosynthesis of seep mytilids and vestimentiferans: implications for symbiotic processes. Chemistry Geology 109, 271-279.
Fang, J., Comet, P. A., Wade, T. L., and Brooks, J. M., 1993. Non-methylene-interrupted fatty acids in the Gulf of Mexico hydrocarbon seep mytilids: occurrence and significance. Comparative Biochemistry and Physiology B 104, 287-291.
Fang, J., Comet, P. A., Wade, T. L., and Brooks, J. M., 1992. Gulf of Mexico hydrocarbon seep communities: IX.  Sterol biosynthesis of seep mussels and its implications for host-symbiont association. Organic Geochemistry 18, 861-868.
Fang, J., Comet, P. A., Brooks, J. M., and Sassen, R., 1992. Stable carbon isotopic composition of lipids of hydrocarbon seep mussels and whitefish, carbon flow implications. Transaction, Gulf Coast Association of Geological Societies 41, 467-472.
Fang, J., 1991. Isotopic evidence for petroleum-derived carbonates in the Gulf of Mexico.  Transaction, Gulf Coast Association of Geological Societies 40, 276-282.
Fang, J., Sassen, R., Nunn, J., and Roberts., H. H., 1990. Organic geochemistry of sediments of the deep-water Gulf of Mexico. Organic Geochemistry 14, 679.
Lin, J. and Fang, J., 1985. Relationship of the characteristics of oilfield brines and distribution of oil and gas fields in eastern China. Minerals and Rocks 23, 65-76.